
Eur. Phys. J. B 18, 107–119 (2000) THE EUROPEAN
PHYSICAL JOURNAL B
c©

EDP Sciences
Società Italiana di Fisica
Springer-Verlag 2000

The statistical mechanics of turbo codes

A. Montanari1,a and N. Sourlas2

1 Scuola Normale Superiore and INFN – Sezione di Pisa, 56100 Pisa, Italy
2 Laboratoire de Physique Théorique de l’École Normale Supérieureb, 24 rue Lhomond, 75231 Paris Cedex 05, France

Received 14 March 2000 and Received in final form 17 July 2000

Abstract. The “turbo codes”, recently proposed by Berrou et al. [1] are written as a disordered spin
Hamiltonian. It is shown that there exists a threshold Θ such that for signal to noise ratios 1/w2 > Θ the
error probability per bit vanishes in the thermodynamic limit, i.e. the limit of infinitely long sequences.
The value of the threshold has been computed for two particular turbo codes. It is found that it depends
on the code. These results are compared with numerical simulations.

PACS. 75.10.Hk Classical spin models – 75.10.Nr Spin-glass and other random models –
89.70.+c Information science

1 Introduction

The recent invention of “turbo codes” by Berrou and
Glavieux [1] is considered a major breakthrough in com-
munications. For the first time one can communicate al-
most error-free for signal to noise ratios very close to the
theoretical bounds of information theory. Turbo codes are
quickly becoming the new standard for error correcting
codes in digital communications. The invention of turbo
codes and their iterative decoding algorithm was empir-
ical. There is no theoretical understanding of why they
are so successful. The decoding algorithm is thought to
be an approximate algorithm. We think that turbo codes
are interesting, even outside the context of communica-
tion theory, because they provide a non trivial example
of a disordered system which can be studied numerically
with a fast algorithm.

In this paper we will study turbo codes and turbo
decoding using the tools of statistical mechanics of dis-
ordered systems. One of us has already shown in the
past [2–5] that there is a mathematical equivalence be-
tween error correcting codes and theoretical models of
spin glasses. In particular the logarithm of the probabil-
ity for any given signal, conditional on the communication
channel output, has the form of a spin glass Hamiltonian.
We will construct the Hamiltonian which corresponds to
the turbo codes and study its properties. This will clar-
ify why they are so successful. In particular we will show
that there exists a thresholdΘ such that for signal to noise
ratios 1/w2 > Θ the average error probability per bit Pe

vanishes in the thermodynamic limit, i.e. the limit of in-
finitely long sequences. In Pe the average is taken over

a e-mail: montanar@cibs.sns.it
b UMR 8549, Unité Mixte de Recherche du Centre National

de la Recherche Scientifique et de l’École Normale Supérieure.

a large class of turbo codes (see later) and over “chan-
nel” noise. The rate of these codes is finite. The value of
the threshold has been computed for two particular turbo
codes. It was found that it depends on the code. We also
compare these results with numerical simulation. Our re-
sults are typical of the statistical mechanics approach: we
study only the average performance of turbo codes, not the
performance of any particular one. Furthermore there ex-
ist “very few” particular codes performing “much worse”
than the average.

Let us first briefly remind the connection between
error-correction codes and spin-glass models. In the math-
ematical theory of communication both the production of
information and its transmission are considered as prob-
abilistic events. A source is producing information mes-
sages according to a certain probability distribution. For
sake of simplicity we shall consider a “flat” probability
distribution, i.e. any message is produced with the same
probability. Messages of length N are sequences of N
symbols or “letters of an alphabet” a1, a2, · · · , aN . We
will assume for simplicity a binary alphabet, i.e. ai = 0
or 1 with equal probability. Instead of ai we can equally
well use Ising spins σi = (−1)ai = ±1. A message of
length N will correspond to a determined sequence of N
spins σ = {σ1, . . . , σN}. The messages are sent through a
noisy transmission channel. If a σ = ±1 is sent through
the transmission channel, because of the noise the out-
put will be a real number σout, in general different from
σ. Let us call Q(σout|σ)dσout the probability for the
transmission channel’s output to be between σout and
σout + dσout, when the input was σ. The probability dis-
tribution Q(σout|σ) is supposed to be known. For reasons
of simplicity, we assume that the noise is independent for
any pair of bits (“memoryless channel”), i.e.

Q(σout|σ) =
∏
i

Q(σout
i |σi). (1.1)

108 The European Physical Journal B

We shall here, for simplicity, consider only the case of the
so called “Gaussian channel” defined by

Qg(σout|σ) ≡ 1√
2πw2

exp
{
− (σout − σ)2

2w2

}
· (1.2)

Shannon calculated the channels capacity C, i.e. the maxi-
mum information per use of the channel that can be trans-
mitted. For a Gaussian channel he obtained:

Cg =
1
2

log2(1 +
1
w2

)· (1.3)

We will consider only the case of “binary input channels”,
i.e. the case when all channel inputs are ±1. In this case
the capacity is reduced to

C′g =
∫

dσQg(σ|+ 1) log2Qg(σ| + 1)

−
∫

dσQg(σ) log2Qg(σ), (1.4)

Qg(σ) ≡ 1
2

[Qg(σ|+ 1) +Qg(σ| − 1)]. (1.5)

Under the above assumptions, communication is a statis-
tical inference problem. Given the transmission channel’s
output and the statistical properties of the source and of
the channel, one has to infer what message was sent. In
order to reduce communication errors, one may introduce
(deterministic) redundancy into the message (“channel en-
coding”) and use this redundancy to infer the message sent
through the channel (“decoding”). The algorithms which
transform the source outputs to redundant messages are
called error-correcting codes.

A large class of error correcting codes can be described
as follows. Instead of sending the N original bits σi, often
called the “letters of the source word”, one sends M bits
{J in

1 , . . . , J
in
M}, with M > N , called the “letters of the code

word”, constructed in the following way

J in
k =

N∑
i1...ilk=1

C
(k)
i1...ilk

σi1 · · ·σilk ; k = 1, . . . ,M, (1.6)

where the “connectivity” matrix C(k)
i1...ilk

has elements zero

or one. For any k, all the C(k)
i1...ilk

except from one are equal
to zero. As a consequence the J in

k are equal to ±1. The kth
bit of the encoded message (i.e. J in

k) is then the product of
lk bits of the original message (i.e. the σ’s on the r.h.s. of
the above equation). The matrix C(k)

i1...ilk
defines the code,

i.e. it tells from which of the σ’s to construct the kth bit
of the code. This kind of codes are called parity checking
codes because J in

k counts the parity of the minuses among
the lk σ’s. The ratio R = N/M < 1 is called the rate of
the code. It specifies the redundancy of the code: low R’s
correspond to highly redundant codes.

As we previously said, the output of the channel is a se-
quence of M real numbers Jout = {Jout

1 , . . . , Jout
M }, which

are random variables obeying the probability distribution

Q(Jout
k |J in

k). The next problem consists in decoding the
output of the channel Jout. Knowing the noise probability
(i.e. Q(Jout

k |J in
k)), the code (i.e. the connectivity matrix

C
(k)
i1...ilk

) and the channel output Jout, one has to infer the
message that was sent. The quality of inference depends on
the choice of the code. According to the famous Shannon’s
channel encoding theorem, there exist codes which, in the
limit of infinitely long messages, allow error-free commu-
nication, provided the rate of the code R is less than the
channel capacity C. This theorem says that such “ideal”
codes exist, but does not say how to construct them.

We have shown that there exists a close mathematical
relationship between error-correcting codes and theoreti-
cal models of disordered systems. Once the channel output
Jout is known, it is possible to compute the probability
P(τ |Jout) for any particular sequence τ = {τ1, . . . , τN}
to be the source word (i.e. the information message). The
equivalence between spin-glass models and error correct-
ing codes is based on the following property. The prob-
ability P(τ |Jout) for any sequence τ to be the informa-
tion message, conditional on the channel output Jout is
given by

lnP(τ |Jout) = const. +
M∑
k=1

Bk

×
N∑

i1...ilk=1

C
(k)
i1...ilk

τi1 · · · τilk ≡ −H(τ) (1.7)

where

Bk ≡ B(Jout
k) ≡ 1

2
ln

Q(Jout
k |1)

Q(Jout
k | − 1)

· (1.8)

For a Gaussian channel (1.2) it is easy to get Bk =
Jout
k /w2. We recognise in equation (1.7) the Hamiltonian

of a p-spin spin-glass Hamiltonian. The distribution of the
couplings is determined by the probability Q(Jout|J in). In
the case when Q(Jout|J in) = Q(−Jout| − J in) (the case
of a “symmetric channel”), B(Jout) = −B(−Jout) and
one recovers the invariance of the spin-glass Hamiltonian
under gauge transformations.

There are different possible strategies for inferring
the information message from the probability distribu-
tion P(τ |Jout). “Minimum error probability decoding” (or
MED), which is widely used in communications, consists
in choosing the most probable sequence τ 0. This is equiv-
alent to finding the ground state of the above spin-glass
Hamiltonian. Instead of considering the most probable
instance, one may only be interested in the most prob-
able value τMAP

i of the “bit” τi (maximum a posteriori
probability or MAP decoding) which can be expressed in
terms of the magnetization at temperature T = 1/β equal
to one [8–10]:

τMAP
i = sign (mi); mi =

1
Z

∑
τ
τi exp{−H(τ)}

(1.9)

A. Montanari and N. Sourlas: The statistical mechanics of turbo codes 109

where H(τ) is defined by equation (1.7). It is remark-
able that β = 1 coincides with the Nishimori temperature
in spin glasses [11]. MAP decoding is an essential ingredi-
ent in turbo decoding (see later).

A widely adopted indicator of the quality of a code is
the error probability per bit P (d)

e . This is defined as the
expected fraction of wrong bits in the decoded message
when the decoding procedure d is used. When all mes-
sages are equally probable and the transmission channel
is memoryless and symmetric, P (d)

e is the same for all in-
put sequences. It is enough to compute it in the case where
all input bits are equal to one. In this case we get

P (d)
e =

1
2

(1−m(d)) ≡ 1
2

(
1− 1

N

N∑
i=1

τ
(d)
i

)
(1.10)

where τ (d)
i is the symbol sequence produced by the decod-

ing procedure.
One can derive a very general lower bound for the

error probability per bit P (MED)
e . It is convenient to in-

troduce a more compact notation. Let us call Ωi (with
1 ≤ i ≤ N) the set of couplings in which the spin τi ap-
pears, that is Ωi ≡ {k ∈ {1 . . .M} such that C(k)

i1...ilk
=

1 and i ∈ {i1 . . . ilk}}. Let Λk (with 1 ≤ k ≤ M) denote
the set {i1, . . . , ilk} of spin indices such that C(k)

i1...ilk
= 1.

In other words {σi|i ∈ Λk} is the set of spin coupled by
the kth interaction term in the Hamiltonian (1.7). The
Hamiltonian (1.7) reads H(τ) = −

∑M
k=1Bk

∏
i∈Λk τi.

For the MED decoding procedure the decoded message
is determined by the following equations:

τMED
i = sign

∑
k∈Ωi

Bk
∏

j∈Λk\i
τMED
j

 . (1.11)

We proceed ab absurdo. Let us suppose that:

(A) τMED
i = +1 for any i = 1, . . . , N ;

(B) |Ωi| (the size of the set Ωi) is finite for any i =
1, . . . , N ; we make the simplifying hypothesis of a
“regular” code with |Ωi| = C independently of i;

(C) |Λk| is finite for any k = 1, . . . ,M ; again let us take
|Λk| = l for any k.

By equation (1.11) and hypothesis 1
∑
k∈Ωi Bk > 0

for i = 1, . . . , N . Now, because of hypothesis 1 and 1 we
can choose a subset {i(1), . . . , i(N ′)} ⊂ {1, . . . , N} such
that N ′ = O(N) when N → ∞ and Ωi(α) ∩ Ωi(β) = ∅
when α 6= β. In other words σi(α) and σi(β) are not cou-
pled by any interaction if α 6= β. The probability that∑
k∈Ωi Bk > 0 for i = 1, . . . , N is bounded from above by

the probability that
∑
k∈Ωi(α)

Bk > 0 for α = 1, . . . , N ′.
The variables

∑
k∈Ωi(α)

Bk and
∑
k∈Ωi(β)

Bk are inde-
pendent and identically distributed if α 6= β. Moreover

defining1 Pflip = P[Bk < 0] we have

P[
∑

k∈Ωi(α)

Bk > 0] = 1− P[
∑

k∈Ωi(α)

Bk < 0]

≤ 1− P[Bk < 0 ∀k ∈ Ωi(α)] = 1− PCflip. (1.12)

We obtain then the following bound:

P

 ∑
k∈Ωi(α)

Bk > 0, α = 1, . . . , N ′

≤ (1− PCflip

)N ′
. (1.13)

Generally speaking Pflip is strictly positive for any non
vanishing noise level. For example for the Gaussian
channel defined in equation (1.2) one gets Pflip =∫∞

1/w dx/
√

2π e−x
2/2. In the thermodynamic limit (N →

∞) N ′ → ∞ and the r.h.s. of equation (1.13)(
1− PCflip

)N ′
→ 0. As a consequence τMED

i = +1 for
i = 1, . . . , N cannot satisfy equation (1.11) and some spins
must be flipped, i.e. some errors must occur.

The occurrence of a “small” number of errors nerr(N)
such that limN→∞ nerr(N)/N = 0 does not imply P (MED)

e

to be non zero in the N →∞ limit. However the reasoning
outlined above can be repeated if the hypothesis 1 above
is substituted by

(A’) The number of flipped spins τMED
i = −1

in the ground state nerr(N) is such that
limN→∞ nerr(N)/N = 0.

We conclude that nerr(N) is of order N and P
(MED)
e is

non zero. Transmission with zero error probability is then
possible only in the limit C →∞.

The rate of the code is given by R = N/M = l/C.
A necessary condition for a finite rate code to achieve
zero error probability, is that the number of spins cou-
pled together (i.e. l) diverges in the thermodynamic limit
(N →∞). This condition is realized in Derrida’s random
energy model [12] which has been shown to be an ideal
code [2] (in that case R = 0). In references [13,14] the
authors investigated the behavior of a class of codes of
the type described above where the connectivity matrix
was constructed randomly. They concluded that zero er-
ror probability per bit is effectively achieved in the limit
C → ∞, l → ∞ at l/C = R fixed if the rate R is lower
than the channel capacity. We will show in the following
that zero error probability can be achieved using recursive
turbo codes, but not using non recursive turbo codes.

2 Convolutional codes

Convolutional codes are the building blocks of turbo
codes. In this section we shall describe both non
recursive and recursive convolutional codes and the corre-
sponding spin models. The information message, i.e. the

1 We use the notation P[A] for denoting the probability of
the event A.

110 The European Physical Journal B

source word, will be denoted by: τ ≡ (τ1, . . . , τN). It is
convenient to think of the source producing a symbol per
unit time, i.e. in τi, i denotes the time. Similarly the code
word can be considered also as a time series. Convolu-
tional codes are very easy to implement in hardware. They
require a certain (small) number r of memory registers.
We shall call r the range of the code. Let’s denote by
Σ1(t), . . . , Σr(t) the content of the memory registers at
time t. At each time step the content of each memory
register is shifted to the right: Σj+1(t + 1) = Σj(t) for
j = 1, . . . , r − 1. For convenience of notation we define
Σ0(t) ≡ Σ1(t+ 1), and the “register sequence” (or “regis-
ter word”) σ according to the rule σi ≡ Σ0(i).

The code word letters at time t are constructed from
the content of the memory registers at time t. The en-
coding for a general convolutional code can be regarded
as a two step procedure: (I) At every time step t update
the values of the memory registers, i.e. compute Σ1(t+ 1)
(since for the othersΣj+1(t+1) = Σj(t)). The bit Σ1(t+1)
will be a function of the incoming source letter τi, i = t,
and of the value of the registers at time t. The choice of
the function depends on the particular code. (II) Com-
pute the new letters of the code word as a function of the
register sequence Σi(t), i = 0, · · · , r. Again the choice of
the function depends on the particular code.

For simplicity we consider codes of rate R = 1/2. In
this case the encoded message (the code word) has the
form J ≡ (J(1)

1 , . . . , J
(1)
N ;J(2)

1 , . . . , J
(2)
N). We will provide

explicit examples of convolutional codes in the following.
The register letters σ’s are function of the source word:

τ 7→ σ(τ) ≡ (σ1(τ), . . . , σN (τ)). (2.1)

When not ambiguous we shall omit in the following the
dependence of σ upon τ .

For a code to be meaningful, the correspondence be-
tween source words τ and register words σ must be a
one to one correspondence. Because of this, instead of the
probability distribution (1.7) of the source word condi-
tional on the channel output, we may as well consider the
probability distribution of the register word (conditional
on the channel output). The resulting expressions can be
simpler and more illuminating (see later).

2.1 Non recursive convolutional codes

In order to define non recursive convolutional codes we
must specify the two steps outlined above.

(I) For non recursive convolutional codes the register
word is identical to the source word:

σi(τ) = τi. (2.2)

This implies Σ0(i) = τi.
(II) The code word J is a function of the register word

defined as:

J
(α)
i =

r∏
j=0

(σi−j)κ(j;α); i = 1, . . . , N. (2.3)

(α = 1, 2 for R = 1/2 codes). The exponents κ(j;α) ∈
{0, 1} define the code. Each letter J(α)

i of the code
word is the product (or equivalently the modulo 2 ad-
dition, if one uses the language of bits instead of Ising
spins) of the memory registers for which κ(j;α) = 1.

We shall assume hereafter that κ(0; 1) = κ(0; 2) = 1. To
avoid redundancy we choose r such that either κ(r; 1) or
κ(r; 2) are different from 0. To make equation (2.3) mean-
ingful for i = 1, . . . , r we define σj = +1 for j ≤ 0. Notice
however that the exact definition of J (α)

1 , . . . , J
(α)
r is irrel-

evant in the thermodynamic limit.
We now give some examples of these definitions and

relate them to the general scheme outlined in the Intro-
duction. For each example we describe explicitly the step
(II) and the corresponding exponents κ(·; ·) as well as the
connectivity matrix.

(a) The simplest non trivial convolutional code has range
r = 1:

J
(1)
i = σiσi−1 ⇒ κ(0; 1) = κ(1; 1) = 1 ;

κ(j; 1) = 0 for j ≥ 2, (2.4)

J
(2)
i = σi ⇒ κ(0; 2) = 1 ;

κ(j; 2) = 0 for j ≥ 2. (2.5)

This can be described using the following connectiv-
ity matrix: C(k)

i1,i2
= δi1,kδi2,k−1 for k = 1, . . . , N and

C
(k)
i = δi,k for k = N + 1, . . . , 2N . Here and in the

other examples M = 2N since the rate is R = 1/2.
(b) A simple code with range r = 2 whose behaviour will

be examined in what follows:

J
(1)
i = σiσi−1σi−2 ⇒ κ(0; 1) = κ(1; 1) = κ(2; 1) = 1;

κ(j; 1) = 0 for j ≥ 3, (2.6)

J
(2)
i = σiσi−2 ⇒ κ(0; 2) = κ(2; 2) = 1 ;

κ(j; 2) = 0 for j 6= 0, 2. (2.7)

The corresponding connectivity matrix is C(k)
i1,i2,i3

=

δi1,kδi2,k−1δi3,k−2 for k = 1, . . . , N and C
(k)
i1,i2

=
δi1,kδi2,k−2 for k = N + 1, . . . , 2N .

(c) The code with range r = 4 used by Berrou and collab-
orators to build the first example of turbo code:

J
(1)
i = σiσi−1σi−2σi−3σi−4 ⇒ κ(0; 1) = · · · =

κ(4; 1) = 1 ;κ(j; 1) = 0 for j ≥ 5, (2.8)

J
(2)
i = σiσi−4 ⇒ κ(0; 2) = κ(4; 2) = 1 ; (2.9)

κ(j; 2) = 0 for j 6= 0, 4.

The connectivity matrix is easily constructed:
C

(k)
i1,i2,i3,i4,i5

= δi1,kδi2,k−1δi3,k−2δi4,k−3δi5,k−4 for k =

1, . . . , N and C
(k)
i1,i2

= δi1,kδi2,k−4 for k = N +
1, . . . , 2N .

As we said above the numbers κ(j;α) define the par-
ticular code. It is sometimes useful to represent con-
volutional codes in the following compact form. Using

A. Montanari and N. Sourlas: The statistical mechanics of turbo codes 111

Σ ()t1

J
t
(1)

(2)

Σ ()t2 Σ ()t3 Σ ()t4
τt

J
t

Fig. 1. Schematic representation of the encoder for a non
recursive convolutional code called code (c) in the text and
defined by equations (2.8, 2.9).

the correspondence of “bits” which take values 0 or 1
and Ising spins, one can formally represent the source
word as a polynomial on Z2 (a polynomial whose co-
efficients are zeros or ones) H(x) ≡

∑N
j=1 Hjx

j ; τj ≡
(−1)Hj . The coefficients of the different powers of x are
the source letters. The variable x is introduced only for
book keeping purposes. Similarly for the register word
G(x) ≡

∑N
j=1 Gjx

j ; σj ≡ (−1)Gj and for the code word

G(α)(x) ≡
∑N
j=1 G

(α)
j xj ; J(α)

j ≡ (−1)G
(α)
j To each of the

two sets of numbers κ(j; 1) and κ(j; 2) associate a poly-
nomial of degree r

gα(x) =
r∑
j=0

κ(j;α)xj . (2.10)

Using these definitions, encoding for non recursive convo-
lutional codes can be restated as follows

G(x) = H(x) , (2.11)

G(1)(x) = g1(x)G(x), G(2)(x) = g2(x)G(x). (2.12)

Equations (2.11) and (2.12) correspond respectively to
the steps (I) and (II) of the encoding procedure. Mul-
tiplication is done using modulo two addition. All these
polynomials have coefficients equal to 0 or 1. From
equation (2.12) it follows that G(α)

i =
∑r
j=0 κ(j;α)Gi−j :

the encoded message is obtained from the register se-
quence through a convolution (whence the denomination
of the code) with the numbers κ(j;α). Written in terms of
spin variables J(α)

i and σi, this convolution coincides with
equation (2.3).

The polynomials gα(x) define the code and are
called generating polynomials. The generating polynomi-
als which correspond to the examples (a)-(c) above are:
(a) g1(x) = 1 + x, g2(x) = 1;
(b) g1(x) = 1 + x+ x2, g2(x) = 1 + x2;
(c) g1(x) = 1 + x+ x2 + x3 + x4, g2(x) = 1 + x4.

The structure of a non recursive convolutional encoder
is reproduced in Figure 1. The encoding procedure works
as follows: the bits of the message enter the shift register

and the contents of the appropriate registers are added
(modulo two) for producing the encoded message.

2.2 Recursive convolutional codes

Recursive convolutional codes are most easily defined in
terms of the generating polynomials. The difference with
non recursive codes is in the step (I), i.e. in the relation
between the source word and the register word. In the non
recursive case this relation was given by equation (2.2) or
by equation (2.12). For recursive codes the two steps works
as follows.

(I)

G(x) =
1

g1(x)
H(x). (2.13)

(II) The second step works exactly as in the non recursive
case, cf. equation (2.12): we have G(1)(x) = g1(x)G(x)
and G(2)(x) = g2(x)G(x).

Combining the two steps we obtain:

G(1)(x) = H(x), G(2)(x) =
g2(x)
g1(x)

H(x). (2.14)

In general g2(x)/g1(x) is not a polynomial, nevertheless
G(2)(x) can be computed using only r memory registers
(see later). Notice that unlike in the non recursive case
the role of the two polynomials g1(x) and g2(x) is not
symmetric. Two different recursive codes can be defined
by permuting them.

We can restate this procedure in terms of the spin
variables τ , σ and J.

(I) From equation (2.13) one obtains G(x) = H(x) +
[g1(x)−1]G(x) (remember that +1 = −1 mod 2) that
is, using κ(0; 1) = 1, Gi = Hi +

∑r
j=1 κ(j; 1)Gi−j .

This relation can be rewritten in terms of the spin
variables as follows:

σi(τ) = τi

r∏
j=1

(σi−j)κ(j;1). (2.15)

This relation defines the register word (the σ’s)
as a function of the source word (the τ ’s) recur-
sively: once σ1(τ), . . . , σi−1(τ) have been computed
equation (2.15) allows to determine σi(τ).

(II) The second step works as in the non recursive case,
cf. equation (2.3): J(α)

i =
∏r
j=0(σi−j)κ(j;α) for any

i = 1, . . . , N and α = 1, 2.

From equation (2.15) it follows that:

τi(σ) =
r∏
j=0

(σi−j)κ(j;1). (2.16)

Notice that J(1)
i = τi: in the recursive case a part of the

encoded message is always the message itself.
The encoding procedure is depicted in Figure 2.

112 The European Physical Journal B

Σ ()t1

J
t
(1)

τt t
Σ ()t2 Σ ()t3 Σ ()t4

J
t
(2)

σ

Fig. 2. The encoder for the recursive convolutional code
with the same generating polynomials as in Figure 1 (cf.
Eqs. (2.8, 2.9)).

2.3 Decoding and spin model formulation

The step (II) of the encoding procedure for convolutional
codes (from the register word to the code word: σ → J)
is of the form (1.6), see equation (2.3). The corresponding
connectivity matrix has been worked out explicitly for the
examples (a)-(c) in Section 2.1 and can be easily written
in the general case. We can then use the method explained
in the introduction in order to write the probability dis-
tribution of the register word, conditional to the channel
output, as the Boltzmann weight of a spin model with
random couplings. The Hamiltonian is in this case:

H(σ; Jout) = −
N∑
i=1

B(J(1),out
i)

r∏
j=0

(σi−j)κ(j;1)

+B(J(2),out
i)

r∏
j=0

(σi−j)κ(j;2)

 , (2.17)

where B(·) is defined in equation (1.8). The spin
model (2.17) is one dimensional with two types of cou-
plings. The range of the interaction coincides with the
range of the code.

The Hamiltonian (2.17) is expressed as a function
of the spins of the register sequence σi, instead of the
source sequence τi used in the introduction. For non re-
cursive codes τi = σi. For recursive codes τi is given by
equation (2.16). In this last case decoding can be thought
of as the computation of an expectation value of a prod-
uct of σ’s. More precisely τi(σ) is a “local” product of
spin variables: the position of the σ’s on the r.h.s. of
equation (2.16) are separated at most by a distance r.
Such a product could be called a “composite operator” in
the language of statistical field theory.

The spin Hamiltonian is the same for both the recur-
sive and non recursive codes. We define the decoding at

arbitrary temperature T ≡ 1/β as follows:

τβi ≡ sign(〈τi(σ)〉β), (2.18)

〈O(σ)〉β ≡
1

Z(Jout;β)

×
∑
σ
O(σ) exp{−βH(σ; Jout)}, (2.19)

where the expression for τi(σ) is given by equation (2.16)
or by equation (2.2) depending whether the code is recur-
sive or not.

As seen in the introduction there are two widely used
decoding strategies:

– minimum error decoding (also called maximum like-
lihood decoding) which consists in finding the most
probable sequence of bits and corresponds to the choice
β =∞ in equation (2.18): τ (MED)

i ≡ τβ=∞
i ;

– maximum a posteriori probability decoding which con-
sists in finding the sequence of most probable bits and
corresponds to the choice β = 1 in equation (2.18):
τMAP
i ≡ τβ=1

i . This is the strategy which enters in
turbo decoding.

Both this strategies can be implemented in a very effi-
cient way using the transfer matrix technique. The corre-
sponding algorithms are known in communication theory
as the Viterbi algorithm [6] for the β = ∞ case and the
BCJR algorithm [7] for the β = 1 case. The complexity of
these algorithms grows like N2r.

The use of the letters of the register word (i.e. of the σ
variables) makes evident the similarity between recursive
and non recursive codes: they correspond to the same spin
model. This implies e.g. that, if zero temperature decod-
ing is adopted, the probability of transmitting a message
without errors is the same for the two codes. In the limit
r → ∞ it is possible to construct convolutional codes
corresponding to spin models with infinite connectivity
and couplings between an infinite number of spins. They
should allow to transmit without errors when the noise is
low enough. In practice, because of the growing complexity
of the transfer matrix algorithm, a compromise between
low r’s (which are simpler to decode) and high r’s (which
show better performances) must be found. The values of
r used in practical cases are between 2 and 7.

We can write the decoding strategy in terms of the
source word (i.e. of the τ variables) without making
use of the register word (i.e. of the σ variables). From
equations (2.18, 2.19) we get

τβi = sign

{
1

Z(Jout;β)

∑
τ
τi exp{−βH(σ(τ); Jout)}

}
.

(2.20)

For non recursive codes, because of equation (2.2), the
source word and the register word are identical. For re-
cursive codes equation (2.16) cannot be inverted in a
local way. When we rewrite equation (2.17) in terms
of the τ variables we obtain a non local Hamiltonian.

A. Montanari and N. Sourlas: The statistical mechanics of turbo codes 113

As a simple illustration of this observation we can con-
sider the Hamiltonian corresponding to the code (a).
When written in terms of the σ variables the Hamilto-
nian reads, cf. equations (2.4, 2.5, 2.17):

H(a)(σ; J) = −
N∑
i=1

B(J(1),out
i)σiσi−1

−
N∑
i=1

B(J(2),out
i)σi. (2.21)

Recall that κ(0; 1) = κ(1; 1) = 1 and κ(j; 1) = 0 for
j ≥ 2, see equation (2.4). From equation (2.16) we get
τi = σiσi−1. We want to express the σ’s as a func-
tion of the τ ’s. We easily get σi = τiσi−1 which implies
σi = τiτi−1 · · · τ2τ1. These relations allow us to express the
Hamiltonian (2.21) an a function of the τ ’s:

H(a)(σ(τ); J) = −
N∑
i=1

B(J(1),out
i)τi

−
N∑
i=1

B(J(2),out
i)

i∏
j=1

τj . (2.22)

Let us consider a generic recursive convolutional code.
We can express Hamiltonian (2.17) in terms of the τ vari-
ables using the generating polynomials technique. We de-
fine the numbers ρ(j) ∈ {0, 1} as follows: g2(x)/g1(x) ≡∑∞
j=0 ρ(j)xj (mod 2). From equation (2.14) we obtain

G(1)
i = Hi and G(2)

i =
∑∞
j=0 ρ(j)Hi−j . We can express

these relations in terms of spin variables: J (1),in
i = τi

(which we already derived) and J
(1),in
i =

∏∞
j=0(τi−j)ρ(j).

Since we imposed the boundary condition τi = +1 for
i ≤ 0, we get

H(σ(τ); J) = −
N∑
i=1

B(J(1),out
i)τi

−
N∑
i=1

B(J(2),out
i)

i−1∏
j=0

(τi−j)ρ(j). (2.23)

Written in this form recursive codes look very different
from non recursive ones with the same range. If g2(x) is
not divisible by g1(x) the corresponding spin models have
infinite connectivity and interactions with infinite range;
they are similar, in this respect, to r = ∞ non recursive
codes. Nevertheless they do not behave, in general, radi-
cally better than non recursive codes with the same range
because there exists, as we have shown, a change of vari-
ables (from τ to σ) which makes the model local.

3 Turbo codes

A turbo code is defined by the choice of a convolutional
code and of a permutation of N objects. We use for the

permutation the following notation:

P : {1, . . . , N} → {1, . . . , N}, (3.1)
i 7→ P (i), (3.2)

and we shall denote by P−1 the inverse permutation
(P (P−1(i)) = P−1(P (i)) = i). The basic idea is to apply
the permutation P to the source sequence τ to produce a
new sequence τP . Obviously τP does not carry any new
information because P is known. The sequences τ and τP
are the inputs of two set of registers, each one implement-
ing a convolutional encoding. In this way the rate of the
code is decreased (i.e. greater redundancy). One can in-
crease the rate by erasing some of the outputs [1], but we
will not consider here this possibility.

The properties of the code can strongly depend on the
choice of the permutation. We will see later that permu-
tations “near” the identity give bad codes. We shall think
to a “good” permutation as to a random permutation. In
the limit N → ∞ they are “far” from the identity with
probability one. We shall discuss this point later in this
section.

In the first step (I) two different register words σ(1)

and σ(2) are constructed from the information message.
In the second step (II) the code word J is constructed
from the register words σ(1) and σ(2). The turbo code has
rate R = 1/3 and the encoded message has the form J =
{J(0)

1 , . . . , J
(0)
N ;J(1)

1 , . . . , J
(1)
N ; J(2)

1 , . . . , J
(2)
N }. The “build-

ing blocks” will be a rate 1/2 recursive convolutional code,
defined by the constants κ(j; 1) and κ(j; 2) and a permu-
tation P . The encoding procedure can be described more
precisely as follows.

(I) From the message τ = {τ1, . . . , τN} we construct
the permuted sequence τP = {τP1 , . . . , τPN} accord-
ing to the rule τPi ≡ τP (i). Two register words
σ(1) = {σ(1)

1 , . . . , σ
(1)
N } and σ(2) = {σ(2)

1 , . . . , σ
(2)
N }

are then produced from the sequences τ and τP as
follows:

σ
(1)
i ≡ σi(τ), σ

(2)
i ≡ σi(τP). (3.3)

The application τ 7→ σi(τ) is defined as for recursive
convolutional codes:

σi(τ) = τi

r∏
j=1

(σi−j(τ))κ(j;1). (3.4)

This implies the relations

τi =
r∏
j=0

(σ(1)
i−j)

κ(j;1) τPi =
r∏
j=0

(σ(2)
i−j)

κ(j;1). (3.5)

In the following we shall use the notation

εi(σ) ≡
r∏
j=1

(σi−j)κ(j;1) (3.6)

for any spin configuration σ = {σ1, . . . , σN}. The re-
lations (3.5) can then be shortened as τi = εi(σ(1))
and τPi = εi(σ(2)).

114 The European Physical Journal B

P

σ (1)

σ (2)

J (1)

J (2)

J (0)

τ

Fig. 3. Schematic representation of the encoder for a recur-
sive turbo code with generating polynomials as in the previous
figures (cf. Eqs. (2.8, 2.9)). Notice the presence of the inter-
leaver (denoted by P) which implements the permutation.

(II) The code word J = {J(0)
1 , . . . , J

(0)
N ;J(1)

1 , . . . , J
(1)
N ;

J
(2)
1 , . . . , J

(2)
N } is constructed as follows from the reg-

ister words:

J
(0)
i ≡

r∏
j=0

(σ(1)
i−j)

κ(j;1), J
(1)
i ≡

r∏
j=0

(σ(1)
i−j)

κ(j;2),

J
(2)
i ≡

r∏
j=0

(σ(2)
i−j)

κ(j;2). (3.7)

There is an apparent asymmetry between the roles
of σ(1) and σ(2) in equation (3.7). However from the
definition of the permuted sequence (τPi = τP (i)) and
equation (3.5) we get

r∏
j=1

(σ(2)
i−j)

κ(j;1) =
r∏
j=1

(σ(1)
P (i)−j)

κ(j;1), (3.8)

whence J
(0)
i =

∏r
j=0(σ(2)

P−1(i)−j)
κ(j;1). Moreover from

equations (3.5, 3.7) we obtain J (0)
i = τi.

The structure of the encoding procedure (permutation
and parallel encoding through recursive convolutional en-
coders) is reproduced in the scheme of Figure 3.

It is convenient to write the turbo codes Hamiltonian
as a function of both register words σ(1) and σ(2). For
convolutional codes we had a unique register word in
one-to-one correspondence to the source word. For turbo
codes we have two different sets of registers and a dif-
ferent word for each set. The two register words satisfy
the constraint (3.8). We will shorten equation (3.8) as
εi(σ(2)) = εP (i)(σ(1)), see equation (3.6). We treat σ(1)

and σ(2) as if they were independent and impose the con-
straint by a Kronecker δ function:

P(σ(1),σ(2)|Jout) =
1

Z(Jout)

×
N∏
i=1

δ(εP (i)(σ(1)), εi(σ(2))) exp{−H(σ(1),σ(2); Jout)},

(3.9)

H(σ(1),σ(2); Jout) = −
N∑
i=1

B(J(0),out
i)

r∏
j=0

(σ(1)
i−j)

κ(j;1)

+ B(J(1),out
i)

r∏
j=0

(σ(1)
i−j)

κ(j;2) +B(J(2),out
i)

r∏
j=0

(σ(2)
i−j)

κ(j;2)

 .

(3.10)

In this way the probability distribution is a local func-
tion of the spin variables σ(1) and σ(2). The correspond-
ing physical model can be seen as the union of two one-
dimensional spin chains (the register words σ(1) and σ(2))
which interact through the constraint in equation (3.9).

A particularly simple case is obtained if P is cho-
sen to be the identity permutation. In this case from
equation (3.8) we get σ(1) = σ(2). We can use the con-
straint in equation (3.9) for eliminating one of the two
register words. The code becomes a convolutional one with
the same rate (1/3) and the same generating polynomials.
We shall use the convolutional code obtained in this way
as a standard comparison term for the performances of
turbo codes (see Figs. 4–6). The outcome of this compar-
ison (we will find that recursive turbo codes have a much
lower error probability than convolutional codes) demon-
strates the importance of the choice of the permutation.

For a generic random permutation it is rather difficult
to express one of the two register words in terms of the
other using equation (3.8). Let us consider as an exam-
ple the code (a). In this case κ(0; 1) = κ(1; 1) = 1 and
κ(j; 1) = 0 for j ≥ 2, see equation (2.4). Equation (3.8)
reads σ(2)

i σ
(2)
i−1 = σ

(1)
P (i)σ

(1)
P (i)−1 whence

σ
(1)
i =

i∏
j=1

σ
(1)
j σ

(1)
j−1 =

i∏
j=1

σ
(2)
P−1(j)σ

(2)
P−1(j)−1. (3.11)

It is simple to show that, for a random permutation, the
number of different σ(2)’s in the product on the r.h.s. of
equation (3.11) is of order N . What do we learn from
this simple example? If we try to express the probabil-
ity distribution (3.9) in terms of a unique register word
(σ(1) or σ(2)) using the constraint in equation (3.9), i.e.
equation (3.8) we obtain a model with large connectivities.

An exception is given by non recursive turbo codes.
In this case κ(j; 1) = δj,0. Using equation (3.5) we get
τi = σ

(1)
i and τPi = σ

(2)
i whence σ

(2)
i = σ

(1)
P (i), see

equation (3.8). The two register words are related sim-
ply by a permutation. The probability distribution can

A. Montanari and N. Sourlas: The statistical mechanics of turbo codes 115

be easily written in terms of a unique register word:

Pnon−rec(σ(1)|Jout) =
1

Z(Jout)
exp{−Hnon−rec(σ(1), (σ(1))P ; Jout)}

(3.12)

Hnon−rec(σ(1),σ(2); Jout) ≡

−
N∑
i=1

{
B(J(0)out

i)σ(1)
i +B(J(1)out

i)
r∏
j=0

(σ(1)
i−j)

κ(j;2)

+B(J(2)out
i)

r∏
j=0

(σ(2)
i−j)

κ(j;2)

}
. (3.13)

The spin model corresponding to this type of code has a fi-
nite connectivity C = 1+2

∑r
j=0 κ(j; 2). This finite versus

infinite connectivity is the essential difference between non
recursive and recursive turbo codes and explains why re-
cursive turbo codes are so better and why they can achieve
zero error probability for low enough noise.

4 Turbo decoding

In this section we discuss the decoding of turbo codes.
In order to decode turbo codes one would like to compute
expectation values with respect to the Hamiltonian (3.10).

There is no exact (and practical) decoding algorithm
for turbo codes. Berrou et al. [1] have proposed a very in-
genious algorithm, called turbo decoding, which is thought
to be approximate. Turbo decoding is an iterative proce-
dure. At each step of the iteration, one considers one of the
two chains, i.e. either the couplings J(0) and J(1) or J(0)

and J(2) and proceeds to MAP decoding. The information
so obtained is injected to the next step by adding appro-
priate external fields to the Hamiltonian. The algorithm
terminates if a fixed point is reached.

In order to explain the algorithm more precisely, we
introduce the following expectation values:

Ξi[B,B′] ≡
1
Z

∑
σ
εi(σ) exp

{
N∑
i=1

Bi

r∏
j=0

(σi−j)κ(j;1)

+
N∑
i=1

B′i

r∏
j=0

(σi−j)κ(j;2)

}
. (4.1)

The Ξi’s can be computed in an efficient way by using
the finite temperature transfer matrix algorithm. They are
expectation values of the products of σ’s which appear
in equation (3.5), see equation (3.6). Then we introduce
the iteration variables θ(m)(t) ≡ (θ(m)

1 (t), . . . , θ(m)
N (t)) and

Γ (m)(t) ≡ (Γ (m)
1 (t), . . . , Γ (m)

N (t)) with m = 1, 2. In terms

of these variables the iteration reads

θ
(1)
i (t+ 1) = Ξi[B(0) + Γ (1)(t),B(1)], (4.2)

θ
(2)
i (t+ 1) = Ξi[B(0),P + Γ (2)(t),B(2)], (4.3)

Γ
(1)
i (t+ 1) = arctanh

[
θ

(2)
P−1(i)(t+ 1)

]
−Γ (2)

P−1(i)(t)−B
(0)
i , (4.4)

Γ
(2)
i (t+ 1) = arctanh

[
θ

(1)
P (i)(t+ 1)

]
−Γ (1)

P (i)(t)−B
(0)
P (i), (4.5)

where B(m) ≡ (B(J(l)out
1), . . . , B(J(l)out

N)), l = 0, 1, 2 and
B

(0),P
i ≡ B(0)

P (i).
The meaning of the previous equations is the following.

The θi are expectation values of a sequence of operators
which can take only values ±1, computed independently
for every element of the sequence. The information con-
tained in θi can therefore be represented by an “external
field” Γi such that θi = tanhΓi. In order to avoid double
counting of information one subtracts the external fields
of the previous iteration as shown in equations (4.4, 4.5).
Hopefully the iteration converges to a fixed point:

lim
t→∞

θ
(1)
i (t) = lim

t→∞
θ

(2)
P−1(i)(t) ≡ θ

∗
i . (4.6)

The decoded message is obtained as follows:

τ turbo
i ≡ sign(θ∗i). (4.7)

The system described by equations (3.9, 3.10) is seen in
turbo decoding as the union of two one-dimensional sub-
system. Each subsystem acts on the other one through a
magnetic field (in the non recursive case) or through an
additional coupling (in the recursive case).

To get some insight of equations (4.2–4.5) we define
the free energy functionals F (1) and F (2):

Z(1)[Γ] =
∑
σ

exp

{
N∑
i=1

(B(J(0)
i) + Γi)

r∏
j=0

(σi−j)κ(j;1)

+
N∑
i=1

B(J(1)
i)

r∏
j=0

(σi−j)κ(j;2)

}
, (4.8)

Z(2)[Γ] =
∑
σ

exp

{
N∑
i=1

(B(J(0)
P (i)) + ΓP (i))

r∏
j=0

(σi−j)κ(j;1)

+
N∑
i=1

B(J(2)
i)

r∏
j=0

(σi−j)κ(j;2)

}
, (4.9)

F (m)[θ] ≡
N∑
i=1

θiΓi − log
(
Z(m)[Γ]

)∣∣∣∣∣
θi=

∂ log(Z(m))
∂Γi

. (4.10)

It is then simple to show that θ∗ is a solution of the
equation:

∂

∂θi
F turbo[θ] = 0, (4.11)

116 The European Physical Journal B

where

F turbo[θ] ≡ F (1)[θ] + F (2)[θ]− F0[θ] , (4.12)

F0[θ] ≡
N∑
i=1

{
−B(0)

i θi − s(θi)
}
, (4.13)

s(x) ≡ −
(

1 + x

2

)
log
(

1 + x

2

)
−
(

1− x
2

)
log
(

1− x
2

)
. (4.14)

Equation (4.12) is an approximation to the true free en-
ergy functional of the total system which is given by:

Z[Γ] ≡
∑
σ(1)

∑
σ(2)

N∏
i=1

δ(εP (i)(σ(1)), εi(σ(2)))

× exp

{
−H(σ(1),σ(2); Jout) +

N∑
i=1

Γiεi(σ(1))

}
,

(4.15)

F [θ; J(0),J(1),J(2)] ≡
N∑
i=1

θiΓi − log (Z[Γ])

∣∣∣∣∣
θi=

∂ log(Z)
∂Γi

,

(4.16)

where H(σ(1),σ(2); Jout) is given in equation (3.10). It is
then evident that

F turbo[θ] = F [θ; J(0),J(1),0]

+ F [θ; J(0),0,J(2)]−F [θ; J(0),0,0] (4.17)

i.e. turbo decoding neglects terms of order
B(J(1)

i1
)B(J(2)

i2
).

5 Replica approach

We would like to compute the error probability per bit for
turbo codes. As explained in the introduction, in the case
of a symmetric transmission channel, it is enough to com-
pute the magnetization in the case of all inputs τi = 1. The
error probability per bit is given by the probability of a
local magnetization being negative. The similarity of the
Hamiltonian (3.10) with the Hamiltonians of disordered
spin systems is obvious. The disorder in the case of turbo
codes has two origins. One is due to the (random) per-
mutation which defines the particular code. The other is
more conventional and is related to the randomness of the
couplings which is due to the transmission noise. As usual
in disordered systems, we can only compute the average
over disorder and for that we have to introduce replicas.

Let us define the expectation value of the operator
εi(σ) defined in equation (3.6) with respect to the proba-
bility distribution given by equations (3.9, 3.10):

Θi[Jout, P] ≡
∑
σ(1)

∑
σ(2)

εi(σ(1))P(σ(1),σ(2)|Jout). (5.1)

The statistical properties of a turbo code can be derived
from the probability distribution of this expectation value:

Pi(θ|P) ≡
∫

dQ[Jout] δ
(
θ −Θi[Jout, P]

)
, i = 1, . . . , N,

(5.2)

where

dQ[Jout] =
2∏
l=0

N∏
i=1

Q(J(l),out
i |+ 1)dJ(l),out

i . (5.3)

Then we define the average distribution

P(θ) ≡ 1
N !

∑
P

∫
dQ[Jout] δ

(
θ −Θi[Jout, P]

)
, (5.4)

where the sum runs over all possible permutations. P(θ)
is expected not to depend upon the site i in the thermo-
dynamic limit (N → ∞). The average error probability
per bit is given by

Pe ≡
∫ 0

−∞
dθ P(θ). (5.5)

In any case Pe is an upper bound for the error probability
of the “best” code (i.e. the one built with the permutation
which yields the lowest error probability).

The replicated partition function is given by:

Zn ≡ 1
N !

∑
P

∫
dQ[Jout]

×
∑

{σ(1),a}

∑
{σ(2),a}

n∏
a=1

N∏
i=1

δ(εP (i)(σ(1),a), εi(σ(2),a))

× exp

{
−

n∑
a=1

H(σ(1),a,σ(2),a; Jout)

}
. (5.6)

In order to compute the average over permutations it
is convenient to use the occupation densities formalism,
introduced by Monasson [15]. The occupation densities
cm(ε) are defined as the normalized fraction of sites such
that εi(σ(m),a) = εa for a = 1, . . . , n:

cm(ε) ≡ 1
N

N∑
i=1

δ
ε,ε

(m)
i
, (5.7)

where ε ≡ (ε1, . . . , εa, . . . , εn) ∈ {−1,+1}n, ε(m)
i ≡

(εi(σ(m),1), . . . , εi(σ(m),a), . . . , εi(σ(m),n)) are replicated
spin variables and

δε1,ε2 ≡
n∏
a=1

δεa1 ,εa2 . (5.8)

A. Montanari and N. Sourlas: The statistical mechanics of turbo codes 117

The average over permutations is done in the Appendix A.
The resulting replicated partition function reads:

Zn ≡
∫

dQ[Jout]
∑

{σ(1),a}

∑
{σ(2),a}

∏
ε

δNc1(ε),Nc2(ε)

×exp

−
n∑
a=1

H(σ(1),a,σ(2),a; Jout)+N
∑
ε

c1(ε) log c1(ε)

 .

(5.9)

The constraint enforced by the Kronecker delta functions
in equation (5.6), i.e. the coupling of the two chains, is
written in terms of the occupation densities. The occu-
pation densities lack any spatial structure and the inter-
action between the two chains is of the mean field type.
Notice that, unlike in mean field models, the replica trick
does not reduce the problem to a single site one.

The occupation densities play the role of the order pa-
rameter and the partition function can be written as an
integral over them. It is possible to find a no error saddle
point of the c integral in equation (5.9) and to study its
local stability.

We briefly report here the main results of this approach
for the Gaussian channel described by equation (1.2). A
detailed analysis will be presented elsewhere [16]. For re-
cursive turbo codes there exists a low noise phase w2 < w2

c

where the error probability vanishes in the thermody-
namic limit (i.e. for infinitely long sequences). In this
phase the model is completely ordered:

P(θ) = δ(θ − 1). (5.10)

The local stability analysis yields the critical value w2
loc

such that for w2 > w2
loc the no-error phase is destroyed

by small fluctuations. Clearly w2
loc ≥ w2

c . We computed
w2

loc for the two cases listed below. For both the rate
is R = 1/3 so that the Shannon noise threshold as
given by equation (1.3) is w2

Shannon = 1/(22/3 − 1) '
−2.31065 dB. Error free communication can take place
only for w2 < w2

Shannon.

– For model (a), defined by equations (2.4, 2.5) one gets
w2

loc = 1/ ln 4 ' 1.41855 dB.
– For model (b), defined by equations (2.6, 2.7) one ob-

tains w2
loc = −1/(2 lnxc) where xc ' 0.741912 . . . is

the only real solution of the equation

2x5 + x2 = 1 (5.11)

The resulting value w2
loc ' −2.23990 dB is quite near

to the Shannon threshold.

6 Discussion

We formulated turbo codes as a spin model Hamiltonian
and we obtained new results using the replica method. It is
well known that this method is not mathematically rigor-
ous. So it is natural to question the validity of our results.

−4.5 −2.5 −0.5 1.5 3.5
 signal to noise ratio (db)

−7.0

−6.0

−5.0

−4.0

−3.0

−2.0

−1.0

0.0

Lo
g(

er
r.

pr
ob

.)

Fig. 4. Numerical results for the error probability per bit of the
recursive turbo code built from the convolutional code (a) (cf.
Eqs. (2.4, 2.5)). Stars (∗) refer to the turbo code, diamonds (�)
to the convolutional code obtained by setting the permutation
P equal to the identity permutation, and the continuous line
to the uncoded message. The leftmost vertical line is located
at the Shannon threshold (w2 = w2

Shannon) while the rightmost
at the threshold of local stability (w2 = w2

loc, see Sect. 5).

−4.5 −2.5 −0.5 1.5 3.5
 signal to noise ratio (db)

−7.0

−6.0

−5.0

−4.0

−3.0

−2.0

−1.0

0.0

Lo
g(

er
r.

pr
ob

.)

Fig. 5. Numerical results for the error probability per bit of
the non recursive turbo code built from the convolutional code
(a) (cf. Eqs. (2.4, 2.5)). The symbols have the same meaning
explained in the caption of Figure 4.

For this purpose we have carried out numerical simula-
tions of the following codes: the recursive turbo code cor-
responding to the convolutional code (a) of Section 2, its
error probability is reported in Figure 4; the non recursive
turbo code obtained by permuting the generating polyno-
mials of the previous one (see Fig. 5); the recursive turbo
code corresponding to the code (b) of the same section
(see Fig. 6). We used the Berrou et al. turbo decoding al-
gorithm and averaged over 200 to 500 realizations of the
disorder.

118 The European Physical Journal B

−4.5 −2.5 −0.5 1.5 3.5
 signal to noise ratio (db)

−7.0

−6.0

−5.0

−4.0

−3.0

−2.0

−1.0

0.0

Lo
g(

er
r.

pr
ob

.)

Fig. 6. Numerical results for the error probability per bit of
the recursive turbo code built from the convolutional code (b)
(cf. Eqs. (2.6, 2.7)). For the meaning of various symbols see the
caption of Figure 4. Notice that in this case w2

loc ∼ w2
Shannon.

The first conclusion is that recursive turbo codes are
much better codes than non recursive ones. Furthermore
our results for recursive turbo codes are compatible with
the existence of a threshold w2

c such that for w2 < w2
c the

error probability per bit is zero, while no such threshold
seems to exist for non recursive codes. This is in agreement
with replica theory. Zero error probability can only be
achieved in the N → ∞ limit. Our simulations are for
N = 105. It would be interesting to perform a detailed
study of finite size corrections, i.e. of the N dependence
of the error probability per bit.

We now discuss the numerical value of the noise thresh-
old w2

c . The first remark is that both numerically and an-
alytically, the critical value is below Shannon’s bound and
that it depends on the convolutional code (i.e. on the gen-
erating polynomials). The second remark is that the ana-
lytical value of threshold, w2

loc ' 1.4186 dB is in very good
agreement with the numerical value for the code (a). For
code (b) w2

loc ' −2.240 dB while one gets w2
c ' −1.7 dB

from the simulations. It would be interesting to under-
stand this disagreement. As we said in the previous sec-
tion, wloc was calculated by a local stability analysis of
the ordered phase, i.e. we assumed that the transition is
of second order. A possible explanation would be that the
transition is second order for code (a) and first order for
code (b). Numerical results seem to support this hypoth-
esis, as the variation of the error probability as a function
of noise is much sharper in case (b). However a much more
careful analysis of finite size effects is necessary in order
to settle this question numerically. One should also look
analytically for the occurrence of a first order transition.

Turbo decoding is an approximate implementation of
temperature one decoding. It can be easily generalized to
arbitrary temperature decoding. An issue of practical rele-
vance is the behavior of these alternative decoding strate-
gies. This behavior is determined by the phase structure
of the model (3.10).

After the completion of this work we learned that
Richardson and Urbanke obtained some similar results by
completely different methods [17].

Appendix A: The replicated partition function

In this appendix we prove the following identity which
holds in the thermodynamic (N →∞) limit:

1
N !

∑
P

N∏
i=1

δ
ε(1)
P(i),ε

(2)
i

= exp

N∑
ε

c1(ε) log c1(ε)

×
∏
ε

δNc1(ε),Nc2(ε), (A.1)

where the ε ≡ (ε1, . . . , εa, . . . , εn) ∈ {−1,+1}n are repli-
cated spin variables and

cm(ε) ≡ 1
N

N∑
i=1

δ
ε,ε

(m)
i
. (A.2)

If we set ε
(m),a
i = εi(σ(m),a) the identity (A.1) allows

to obtain the replicated partition function (5.9) from
equation (5.6).

The l.h.s. of equation (A.1) is non vanishing only if
the (replicated) spin variables ε(1) are a permutation of
the ε(2). If this happens then the number of sites i such
that ε(1)

i takes a given value ε is the same as the number of
sites j such that ε(2)

j takes the same value. In other words
Nc1(ε) = Nc2(ε) for any ε ∈ {−1,+1}n. It is clear that
also the converse is true. If, for any ε ∈ {−1,+1}n, ε(1)

i = ε

as many times as ε(2)
j = ε for i, j = 1, . . . , N then there

exist a permutation P such that ε(1)
P (i) = ε

(2)
i for all the

i = 1, . . . , N . We can rewrite the l.h.s. of equation (A.1)
as follows

1
N !

(nb. of permutations P s.t. ε(1)
P (i) = ε

(2)
i

for 1 ≤ i ≤ N)
∏
ε

δNc1(ε),Nc2(ε). (A.3)

We have seen that there exists at least one permutation
such that ε(1)

P (i) = ε
(2)
i for 1 ≤ i ≤ N if the constraint in

equation (A.3) is satisfied. What is the number of these
permutations? Let us fix one of them, say P̂ . We have that
ε
(1)

P̂ (i)
= ε

(2)
i . We are still free to permute any two sites i

and j such that ε(1)
i = ε

(1)
j . More precisely, if P ′ is such

that ε(1)
P ′(i) = ε

(1)
i for any i = 1, . . . , N , then P̃ ≡ P ′P̂

satisfies ε(1)

P̃ (i)
= ε

(2)
i . In fact ε(1)

P̃ (i)
= ε

(1)

P ′P̂ (i)
= ε

(1)

P̂ (i)
= ε

(2)
i .

In this manner we can construct all the permutations we
are interested in.

The permutation P ′ can be constructed as follows.
For each ε ∈ {−1,+1}n we choose a permutation among

A. Montanari and N. Sourlas: The statistical mechanics of turbo codes 119

the Nc2(ε) sites i such that ε
(2)
i = ε. We construct

P ′ as the product of these 2n permutations: the order
does not matter since permutations which act on dif-
ferent sites commute. The number of permutation we
are looking for is then the product of a factor for each
ε ∈ {−1,+1}n. The factor associated to a given ε is the
number of permutations of Nc2(ε) objects. We can then
rewrite equation (A.3) as

1
N !

∏
ε

(Nc2(ε))!
∏
ε

δNc1(ε),Nc2(ε). (A.4)

Using the Stirling formula and the property
∑
ε c2(ε) = 1

and keeping track of the leading term for N →∞ we get
equation (A.1).

References

1. C. Berrou, A. Glavieux, P. Thitimajshima, Proc. 1993
IEEE Int. Conf. Commun. (Geneva, Switzerland, 1993),
pp. 1064–1070.

2. N. Sourlas, Nature 339, 693 (1989).

3. N. Sourlas, Statistical Mechanics of Neural Networks, Lec-
ture Notes in Physics 368, edited by L. Garrido (Springer
Verlag, 1990).

4. N. Sourlas, École Normale Supérieure preprint (April,
1993).

5. N. Sourlas, From Statistical Physics to Statistical Inference
and Back, edited by P. Grassberger, J.-P. Nadal (Kluwer
Academic, 1994), p. 195.

6. A.J. Viterbi, IEEE Trans. Com. Technology COM-19,
751 (1971).

7. L. Bahl, J. Cocke, F. Jelinek, J. Raviv, IEEE Trans. Inf.
Theory IT-20, 248 (1974).

8. P. Ruján, Phys. Rev. Lett. 70, 2968 (1993).
9. N. Sourlas, Europhys. Lett. 25, 159 (1994).

10. H. Nishimori, J. Phys. Soc. Jpn 62, 2973 (1993).
11. H. Nishimori, J. Phys. C 13, 4071 (1980).
12. B. Derrida, Phys. Rev. B 24, 2613 (1981).
13. Y. Kabashima, D. Saad, Europhys. Lett. 45, 97 (1999).
14. R. Vicente, D. Saad, Y. Kabashima, Phys. Rev. E 60, 5352

(1999).
15. R. Monasson, J. Phys. A 31, 513 (1998).
16. A. Montanari, Eur. Phys. J. B 18, 121 (2000).
17. T. Richardson, private communication.

